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Abstract

Objectives Predicting the rate of percutaneous absorption of a drug is an important issue
with the increasing use of the skin as a means of moderating and controlling drug delivery.
One key feature of this problem domain is that human skin permeability (as Kp) has been
shown to be inherently non-linear when mathematically related to the physicochemical
parameters of penetrants. As such, the aims of this study were to apply and evaluate
Gaussian process (GP) regression methods to datasets for membranes other than human
skin, and to explore how the nature of the dataset may influence its analysis.
Methods Permeability data for absorption across rodent and pig skin, and artificial
membranes (polydimethylsiloxane, PDMS, i.e. Silastic) membranes was collected from the
literature. Two quantitative structure–permeability relationship (QSPR) models were used to
compare with the GP models. Further performance metrics were computed in terms of all
predictions, and a range of covariance functions were examined: the squared exponential
(SE), neural network (NNone) and rational quadratic (QR) covariance functions, along with
two simple cases of Matern covariance function (Matern3 and Matern5) where the polyno-
mial order is set to 1 and 2, respectively. As measures of performance, the correlation
coefficient (CORR), negative log estimated predictive density (NLL, or negative log loss)
and mean squared error (MSE) were employed.
Key findings The results demonstrated that GP models with different covariance functions
outperform QSPR models for human, pig and rodent datasets. For the artificial membranes,
GPs perform better in one instance, and give similar results in other experiments (where
different covariance parameters produce similar results). In some cases, the GP predictions
for some of the artificial membrane dataset are poorly correlated, suggesting that the
physicochemical parameters employed in this study might not be appropriate for developing
models that represent this membrane.
Conclusions While the results of this study indicate that permeation across rodent (mouse
and rat) and pig skin is, in a statistical sense, similar, and that the artificial membranes are
poor replacements of human or animal skin, the overriding issue raised in this study is the
nature of the dataset and how it can influence the results, and subsequent interpretation, of
any model produced for particular membranes. The size of the datasets, in both absolute and
comparative senses, appears to influence model quality. Ideally, to generate viable cross-
comparisons the datasets for different mammalian membranes should, wherever possible,
exhibit as much commonality as possible.
Keywords Gaussian processes; in-vitro methods; percutaneous absorption; quantitative
structure–permeability relationships

Introduction

In-vitro drug penetration studies normally involve the use of excised human skin, skin
from suitable animals or synthetic model barrier membranes. Studies using excised human
skin provide a good indication of drug penetration, especially through the stratum
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corneum, the primary barrier to drug penetration. Porcine
skin has been widely and effectively employed as a substi-
tute to human skin by many researchers.[1,2] Various synthetic
membranes, and those of biological origin, have also been
employed in drug release studies, notably dialysis mem-
branes[3] and Silastic® (polydimethylsiloxane (PDMS)).[4–13]

Such membranes must be capable of simulating in-vivo con-
ditions if they are to be used to examine steady-state drug
diffusion kinetics.

PDMS has been widely utilised as a model barrier
membrane for determining drug diffusion from transdermal
devices. Nacht and Yeung[6] demonstrated its lipid-like prop-
erties and compliance with diffusion kinetics in accordance
with Fick’s first law, which make it an acceptable model
membrane. However, it has also been suggested that PDMS
may be limited in representing skin absorption, particularly
across a wide range of physicochemical properties.[13] In addi-
tion, it has been shown that, when quantitative structure–
permeability relationship (QSPR) models are derived for
PDMS membranes they are mechanistically different from
those derived for human skin.[14,15]

Nevertheless, a major limitation to in-vitro diffusion
studies through excised human skin is the availability of
suitable tissue. This has resulted in the widespread use of
synthetic membranes and various animal models in place
of excised human skin, and may impact upon the ability to
develop representative models based on in-vitro experimental
data.[16] Studies comparing drug penetration across the skin of
various animals with drug penetration across human skin have
indicated that the skin of several animals provide excellent
models for human skin. The models best mimicking drug
release through human skin are pig and monkey skin.[1,17]

Further, Garrett and Chemburkar[4] demonstrated that drug
release through PDMS provided a good comparison with
excised skin. Despite its advantages, excised human or animal
skin cannot duplicate certain in-vivo effects, including
metabolism, blood flow and removal of the penetrant from the
site of application. When Cronin et al.[14] modelled perme-
ation across a PDMS membrane they determined that flux
of the penetrant was related to its ability to form hydrogen
bonds, and not to its lipophilicity, as suggested by a number
of studies on skin ex vivo.[15,18] Similar findings were later
reported by Geinoz et al.[19]

Human skin differs from that of many animals in the thick-
ness of its stratum corneum, the number of appendages per
unit area and the amount of lipids present in the skin. Despite
this, it is very unusual that no quantitative mathematical
models have been developed for the purpose of characterising
permeation across non-human skin. This is perhaps due to the
development and success of the Potts and Guy model in
1992,[18] the first major model for predicting percutaneous
absorption which was based on human skin data. However,
the widespread use of animal skin in experiments since 1992,
which is often validated by comparison with human skin data,
only provides partial validation as it does not specifically
examine the mechanistic nature of the absorption process, as
quantitative models can. Further, despite extensive work on
comparing the permeation across different species, the use of
rodent skin in particular continues to be found extensively
throughout the literature.

Analysis of human skin permeability has been shown to be
non-linear when mathematically related to the physicoche-
mical parameters of penetrants.[16,20,21] These studies have also
shown that non-linear methods, such as Gaussian processes
(GPs), have statistically outperformed other methods, such as
QPSRs. Further, they have shown that GP models provided
more accurate predictions of permeability than QSPR mod-
els.[16,21] Therefore, the aims of this study were twofold; firstly,
to apply and evaluate GP methods, by comparison with QPSR
models, to datasets for membranes other than human skin,
which are commonly used as reasonable replacements. Sec-
ondly, this work aims to highlight potential pitfalls in the
analysis of such data, and to show how the simple application
of models may provide outcomes and findings that are not
always as straightforward as they may seem.

Methods

Description of the datasets employed
The four datasets employed in this study have been collated
from a number of literature sources. The human, pig, rodent
and artificial membrane datasets (the latter being comprised
of PDMS membranes and cultured membranes, as specified in
Table 1) consist of 140, 15, 103 and 19 chemical compounds,
respectively. While the human data has been presented exten-
sively in the literature, and predominately consist of the well
known and frequently studied Flynn dataset,[22] the others
are shown in Table 1. Among these four datasets, there exist
chemicals common to each dataset. Table 2 shows the number
of chemical compounds common to human and animal or
synthetic membranes.

Normally, most QSPR models suggest that log P and
molecular weight (MW) are the most significant descriptors
for permeability. However, Roberts and others[82–87] have
shown that other parameters, particularly hydrogen bonding,
are of importance. This has also been shown recently.[16,20,88]

Indeed, Lam et al.[16] suggested that certain parameters were
effectively interchangeable, or possibly co-linear, and that
removing or adding certain physicochemical descriptors to
the model did not affect its statistical quality or its ability to
accurately predict permeability. Hence, the current study
employs those methods used previously[16,20,88] and examines
five physicochemical descriptors – log P, MW, the number of
hydrogen bond donor and acceptor groups and solubility
parameter, the latter being defined by Fedors.[89] Detailed
descriptions of the methods employed to determine these
parameters may be found elsewhere.[13,16,20,21]

Visualisation of the skin datasets
To visualize the data, all four datasets were collated and then
normalised to ensure that all five physicochemical descriptors
employed had a zero mean and unit variance. Principal com-
ponent analysis (PCA) was used to visualize the normalised
data by mapping it onto a low-dimensional space with a linear
transformation, where permeability (log Kp) was plotted
against the first two principal components (Figure 1). PCA
indicates that the first principal component is responsible for
43.0% of the total variance, and the second principal compo-
nent for 31.4% (PCA1 = 0.34MW + 0.15logP + 0.36SP +
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0.63HA + 0.57HD; PCA2 = -0.56MW - 0.64logP + 0.47SP -
0.03HA + 0.23HD). Figure 1 also shows that there is no linear
relationship between log Kp and the first or second principal
components, suggesting the presence of more complex under-
lying non-linear patterns within the data. Further, it can be
seen that the dataset for rodent skin has a similar distribution
to human skin. Such comparisons are difficult to make for the
pig and artificial membrane data as most of the log Kp values
are outside the same range.

Quantitative structure–permeability relationship
(QSPR) models
Two QSPR models were applied to the human skin dataset
to provide a comparison with GP methods. The first model
was that proposed by Potts and Guy,[18] where log Kp

(cm/s) = 0.71logP – 0.0061MW – 6.3. The second model
was that proposed by Moss and Cronin,[90] where log Kp

(cm/h) = 0.74logP – 0.0091MW – 2.39. The latter model is
derived from a slightly larger dataset than the former, and one
where the original steroid data used by Potts and Guy,[18] as
collated by Flynn,[22] has been corrected by Johnson.[91] It
should also be noted that the above models used different
methods for calculating log P. The absence of QSPR models
for animal skin (apart from, for example, the work of Lin
et al.[92] who examined the permeation of eight amino acids
and dipeptides through porcine skin) meant that comparison
in these cases were made against the naïve model.[20]

Gaussian process regression
A GP regression is defined as a collection of random variables
that, jointly, have a Gaussian distribution and which is char-
acterised completely by its mean and covariance function. The
mean function is usually defined as the ‘zero everywhere’
function. The covariance function, k(xi, xj), allows for speci-
fying a-priori knowledge from a training dataset. It defines
nearness or similarity between the values of f(x) at the two
points xi and xj.[20,93]

To make a prediction, y*, at a new input, x*, the conditional
distribution, p(y*|y1. . . ,yN), is computed on the observed
vector [y1. . . ,yN]. Since the model being applied is a GP, this
distribution is also Gaussian in nature and is therefore com-
pletely defined by its mean and covariance. By the application
of linear algebra, the mean and variance, x*, are given by

E y

var y k

T
n

T
n

* *

* * * * *

k K I y

x x k K I k

[ ] = +( )
[ ] = ( ) − +( )

−

−
σ

σ

2 1

2 1

,

, ,
(1)

Where k is the covariance matrix; I the identity matrix; k*
denotes the vector of covariances between the test point and
the N training data; σ n

2 denotes the variance of an independent
identically distributed Gaussian noise; y denotes the vector
of training targets; and k(x*, x*) denotes the variance of y*.
The mean is used as the predicted value generated by the GP
model and the variance is shown as error bars on a graphical
representation.

Further, the nature of the covariance functions used
was explored. The squared covariance function, the neural

Table 2 The number of chemical compounds common to human and
animal (synthetic) membranes

Dataset Number of
common
members

Number of
non-common

members

Pig 3 12
Rodent 48 55
Synthetic (polydimethylsiloxane,

PDMS)
7 12
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Figure 1 The relationship between log Kp and the principal component
analysis (PCA) space of chemical compounds. (a) The first principal
component. (b) The second principal component.
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network covariance function, the rational quadratic cova-
riance function and two members of the Matern class of
covariance function were explored.[93] An independent noise
contribution was incorporated into the covariance function.
These covariance functions are summarised in Table 3.

Performance measures
The measures used to characterise statistically model quality
have been described in detail previously.[16,20,21,88] The para-
meters used are the mean squared error (MSE), improvement
over naïve model (ION), negative log estimated predic-
tive density (NLL) and the Pearson correlation coefficient
(CORR). The MSE measures the averaged squared difference
between model predictions and the corresponding targets. The
ION measures the degree of improvement of the model over
the naïve predictor (whose value is always the same; namely,
the mean of experimental log Kp in the training set). The
CORR measures the correlation between predictions and
targets. For comparison, a model should aim to exhibit low
values of both NLL and MSE and high values of ION and
CORR for a given test dataset.

Analysis of the datasets
Firstly, the GP regression models for pig, rodent tissue and
the artificial membranes were evaluated, and the most suitable
covariance functions determined. GPs were applied with the
different covariance functions described above and in Table 3
for each dataset. Further, the QSPR models were compared
with GP models for the human skin dataset. For each different
dataset analysis the ‘leave-one-out’ method was applied, and
repeated for each member of the datasets in turn.

Secondly, given the number of animal experiments
described in the literature, and the difficulties in obtaining
human skin for experiments, the ability of a dataset consisting
of permeability values from animal experiments (pig and

rodent) to provide reasonable estimates of human skin perme-
ability, particularly where current models of human skin have
shown poor ability to model permeability (i.e. for compounds
with a high log P value), was investigated by GP methods. The
pig and rodent datasets were used separately as training sets
and the trained GP model, using the neural network covari-
ance function, was tested on the whole human skin dataset.

Thirdly, a quantitative comparison of human skin perme-
ability predictions between GP-trained models on a rodent
and human skin training dataset was undertaken. To make this
comparison, the chemical compounds that were common to
both datasets were used. There were 48 chemicals common to
both of these datasets. A training set, which included the 48
common chemicals that had target values (i.e. experimentally
measured values of Kp) in both the rodent and human skin
datasets, was constructed. Two training models were then
produced; one which predicted the skin permeability trained
by using human skin data, and the other which was trained
using rodent skin data. Previously ‘unseen’ human skin data
(the remaining 92 compounds in the human skin dataset)
was used as a test for both models. The GP model applied in
the first experiment, described above, was again used (a GP
model with five physicochemical descriptors and employing
the Matern3 covariance function).

Finally, the performance of a model trained on a combined
dataset of rodent and human skin data was compared with
that of a model trained solely on human skin, to assess the
effect of such a combined dataset to model quality and
predictivity. To avoid inconsistent training examples (i.e.
examples with similar physicochemical descriptors but dif-
ferent target values), non-common chemical compounds were
used as training examples. Thus, a human skin model was
trained using human data (denoted as trnH) – the 92 non-
common chemical compounds, and was tested using human
data with the 48 common chemical compounds. To generate

Table 3 List of the covariance functions applied in Gaussian process regression analysis

Covariance function Description Comments

Squared exponential
covariance function

k Mi j f i j
T

i jx x x x x x, exp( ) = − −( ) −( )⎛
⎝⎜

⎞
⎠⎟σ 2 1

2
Where M = l-2I, l is characteristic length-scale, and I the identity

matrix. In these experiments, the l is the same for each
feature (descriptor)

Neural network covariance
functiona

k
x Ix

x Ix x Ix
i j

i
T

j

i
T

i j
T

j

x , x sin( ) =
+( ) +( )

⎛

⎝
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⎞

⎠
⎟−α

β
β β

1

1 1

ˆ ˆ
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Where a and b are scalar hyperparameters to be optimized, x̂ is

the x vector extended by appending an element with the value
1. In these experiments, the neural network covariance
function uses b as l shown above.

Rational quadratic covariance
function

k
l

i j
i jx x

x x
,( ) = +

−⎛

⎝⎜
⎞

⎠⎟

−

1
2

2

2α

α

Where a and l, the characteristic length-scale, are non-negative
parameters of the covariance function.

Matern3 covariance function polynomial order p; p = 1 Includes the Matern covariance functions with isotropic distance
measures, where a and l, the characteristic length-scale, are
non-negative parameters of the covariance function.

Includes the Matern covariance functions using l as above. The
Matern covariance function can be defined as a product of an
exponential and a polynomial of differing orders p (see middle
column), where p is the highest exponent in the polynomial.

Matern5 covariance function polynomial order p; p = 2

aDescribed by Neal (1996) as being equivalent to a feed-forward neural network with a single hidden layer (denoted as NN) in the limit of an infinite
number of hidden units.[106]
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a mixed model using human and rodent data, a mixed dataset
was required. Further, a training set consisting of size 92
chemical compounds was used compare it with trnH, which
had 92 compounds. Therefore, this was composed of chemi-
cal compounds that were not included in those common
chemical compounds from the rodent dataset (55 compounds,
denoted by trnR). Fifty samples were then randomly selected
from trnH, and 42 from trnR, and added together and denoted
as trnHR. The GP model was trained using trnHR. Finally,
the GP model trained on trnHR was tested on the same
human skin data as was used for the human skin model (i.e.
48 compounds). This procedure was repeated 10 times and
the average results are shown in Table 5. Finally, the actual
value of skin permeability (for rodent) was used as a predic-
tion for human skin, as the test set contained only those
compounds that were common to both rodent and human
tissues.

Analysis was carried out via MatLab (R2008a) as
described previously.[16] Briefly, the compounds were ran-
domly allocated into the subsets automatically by Matlab via
the primeSeed code. This acts as a recorder and documents the
allocation of the compounds in the subsets. The experiment
was repeated 10 times and generated 10 different training sets.
Dealing with small datasets brings particular problems as
test sets may be very small. Therefore, while there are many
methods for dealing with this,[94] in this study we employed
the simplest method available. Each training set contained a
unique primeSeed code that recorded the compounds allo-
cated in the corresponding training set. For the first three

methods described above the leave-one-out method was
employed, and for the final method randomly selected training
sets, rather than the test set, were generated. Performance
metrics were then computed in terms of all predictions.[20]

Results

Model validation
Table 4 lists the results of the model validation experiments,
as described previously,[16] which describe the statistical
quality of the models according to the performance measures
described in the preceding section. For each experiment
the best statistical outcome is highlighted in bold. It can be
seen that GPs with different covariance functions outperform
QSPRs on the human dataset and outperform the naïve model
on all the datasets. It was observed that covariances NN and
Matern3 produced the best results, with regard to their statis-
tical performance. If one example is randomly taken from the
pig skin dataset (that compound with an experimentally deter-
mined log permeability coefficient of -6.29 cm/h, scopola-
mine, Table 1) and compared with GP predictions, the GP
models with neural network and Matern3 covariance func-
tions yield predictions of, respectively, -5.79 and -4.47 cm/h.
For the artificial membrane dataset, the GP model with NN
covariance yielded the best performance, while the rational
quadratic covariance function resulted in a worse performance
than the naïve model. The other covariance methods produced
results similar to the naïve model.

Table 4 Leave-one-out results for human, pig and rodent skin, and synthetic membrane datasets

Membrane Model MSE ION CORR NLL

Human skin QSPR Moss & Cronin 20.09 -1157.60 0.14 -
Potts & Guy 5.50 -244.53 0.10 -

Naïve model 1.6 0 -1 –
GP NN 1.13 29.14 0.53 1.48

SE 1.23 23.13 0.49 1.53
RQ 1.13 29.06 0.53 9.42
Matern3 1.20 25.08 0.51 9.43
Matern5 1.21 24.26 0.50 9.43

Pig skin Naïve model 2.50 0 -1 –
GP NN 0.59 76.52 0.86 1.65

SE 0.64 74.45 0.84 20.65
RQ 0.73 70.81 0.82 21.51
Matern3 0.51 79.74 0.88 1.08
Matern5 0.62 75.30 0.85 1.76

Rodent skin Naïve model 1.30 0 -1 –
GP NN 0.88 32.63 0.56 1.41

SE 0.86 34.39 0.58 1.40
RQ 0.86 34.07 0.58 1.41
Matern3 0.83 36.25 0.60 1.38
Matern5 0.84 35.70 0.59 1.39

Synthetic membrane
(polydimethylsiloxane, PDMS)

Naïve model 5.79 0 -1 –
GP NN 3.57 38.26 0.60 2.03

SE 5.45 5.84 0.23 2.52
RQ 6.33 -9.34 -0.70 2.96
Matern3 5.55 4.15 0.08 2.72
Matern5 5.19 10.37 0.22 2.65

CORR, Pearson correlation coefficient; GP, Gaussian Process; ION, improvement over naive model; MSE, mean squared error; NLL, negative log
estimated predictive density or negative log loss; QSPR, quantitative structure-permeability relationship.
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Absolute differences between predictions and
experimental results
With regard to the accuracy of predictions for human skin, 87
out of 140 of the predictions produced by the GP model, with
the neural network covariance function, were closer to the
target (experimental) values than both the naïve model and
the Potts and Guy 1992 QSPR model.[18] Further, 58 of the
103 predictions produced by the GP model were closer to the
targets for the rodent data, compared with the naïve model.
For this particular model, the comparison of predictions with
experimental results appears to be dependent in some cases
upon particular physicochemical descriptors, with the model
performing better in certain ranges. For example, Figure 2
shows the differences between the predictions from the
GP and naïve models, plotted against the log P values of the
data, for porcine skin (Figure 2a) and the artificial membrane
dataset (Figure 2b). It may be seen in these figures that the
porcine skin model appears to give generally good predictions

across a wide range of log P values, whereas the artificial
membrane model appears to give uniformly poor performance
for the same parameter. This indicates that the majority of the
differences from GP models are smaller than those for the
naïve model for the pig skin dataset. In the case of the artificial
membrane dataset, nearly half the differences from GP mod-
elling are smaller than those from the naïve model.

Comparison of animal and human data
The results of using the animal datasets to provide prediction
of human skin permeation are shown in Table 5, with the best
highlighted in bold. The results in Table 5 indicate that the GP
models outperform the QSPR models, and that the model
trained with the rodent dataset gives the best results in terms
of accuracy of prediction. Further, the GP model trained using
the pig dataset produced worse predictions than the naïve
model, although this may be a result of the small size of the
pig skin dataset. Figure 3 shows the experimental skin perme-
ability coefficients obtained from human, pig and rodent
datasets plotted against log P. It shows that examples from the
pig dataset (Figure 3b) do not cover the whole range of physi-
cochemical descriptors and target values of the human skin
data (Figure 3a). Again, this may be due to the limited size of
the pig skin dataset. In contrast, the relationship of rodent skin
data to log P (Figure 3c) is reasonably similar to that with
human skin data, which might suggest that the underlying
mechanism of percutaneous absorption is similar for both
species, and may indicate why the rodent skin dataset pro-
vides the best prediction of penetration into human skin.

Cross-comparison between datasets
Table 5 also shows the results from the comparison of human
skin permeability predictions between GP-trained models on
a rodent and human skin training dataset. The best results are
again highlighted in bold. It can be seen that both the human
and rodent training sets give better predictions on the human
test set than using either the naïve model or QSPRs. Further,
GP predictions from the rodent model are substantially better
than the human skin naïve model.

Combining rodent and human data
The results of the addition of rodent skin data to a human skin
training set are shown in Table 5. It can be seen that including
rodent skin examples in the training set can produce predic-
tions which, on average, are nearly as accurate as using a
human training set of the same size. Finally, the results of
using a GP model trained on rodent skin permeability values
to predict human skin permeability are shown in Table 5. The
results of this experiment are shown in the final row of
Table 5, which looks at the statistical performance on the
human test data set using models trained on the human, rodent
and mixed training sets, respectively. The results in the final
row of Table 5 indicate that they produce a prediction com-
parable to using human skin.

The results of this study show that, in general, GP methods
produce better results, including better predictions of experi-
mental targets, than QSPR models and naïve predictions when
applied to the human and animal skin datasets employed in
this work.
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Figure 2 Differences between predictions and targets (experimental
data) for (a) the pig skin and (b) polydimethylsiloxane (PDMS) datasets.
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Discussion

The results of this study show that, in general, GP methods
produce better results, including better predictions of experi-
mental targets and statistical performance measures, than
QSPR models and naïve predictions when applied to the
human and animal skin datasets employed in this study. It
also shows that better predictions of human skin permeability
are obtained using models trained with rodent skin than with
porcine skin, and that the former relates more closely to
human skin absorption. They suggest that the GP models
produce better results, both in a statistical sense, and in terms
of the accuracy of prediction, than the quantitative structure-
activity relationship (QSAR) models used to benchmark
them. The results produced are, as in previous studies, con-
sistent with an underlying non-linearity in the dataset.[16,20]

This is particularly evident at the extremes of the model.
When Cronin and Schultz discussed the pitfalls of QSAR

models, they listed a series of criteria for their use.[95] Key
among their recommendations were the avoidance of extrapo-
lation beyond the domain of the model, appreciation of the
model’s precision and its expected application in the context
of the original biological measurement (in the case of percu-
taneous absorption, this relates to Jmax or Kp), a single model
that describes the whole process and not single steps or parts
of the dataset employed, the avoidance of non-transparent
QSARs and the correct understanding of the endpoint of
the QSAR and its intended scope of use. Finally, they recom-
mended the development of QSARs by multi-disciplinary
groups of researchers whose expertise extends across all parts
of the study and its methodology. Their work has been refined
and has informed the OECD Principles for the Validation of
(Q)SAR Models (available at http://www.oecd.org/document/
4/0,3746,en_2649_34379_42926724_1_1_1_1,00.html).
While this format provides a more robust description of
QSARs for regulatory use, we have focused on the comments
made by Cronin and Schultz.[95] While this manuscript, or the

underlying Gaussian methods it uses, may ultimately have
regulatory significance we believe that the key points this
study makes, with regard to the construction and use of
models, are more conceptual and, at this stage of the work,
concern themselves more with the underlying principles and
concepts of the Gaussian methods and model construction
and development rather than validated models of regulatory
significance.

Their latter point is particularly well emphasised in this,
and previous studies,[16,20,21,88] and does impact on the issue of
model transparency, an issue addressed and discussed in great
detail previously, particularly in the use of feature selec-
tion methods by Lam et al.[16] To further reflect Cronin and
Schultz’s point on the construction of a multi-disciplinary
team to examine this problem[95] this, and earlier, work[16,20,21,88]

addressed their point in that a range of scientific disciplines
contribute to this work. This particularly relates to the most
fundamental work that underpins the use of GP models –
the use of simple methods of data visualisation coupled with
principal and canonical component analysis. This demon-
strated the fundamental non-linearity of the dataset used for
percutaneous absorption modelling, and highlights the issue
with many studies that have adopted linear methods in their
analyses.[15,20,21] It also reflects Flynn’s comments which stated
that very hydrophilic and very hydrophobic compounds were
represented by different mathematical relationships, suggest-
ing, among other things, non-linearity.[22] While these previ-
ous studies have been benchmarked against the Potts and Guy
model,[18] due to its enormous contribution to this field and its
widespread acceptance as the first quantitative model of per-
cutaneous absorption, iterations of that model that include
non-linear terms might provide more substantial and realistic
benchmarks.

It is also important to build upon Cronin and Schultz’s
comment on the fundamental nature of a QSAR or other
‘mathematical model’ of a biological process, which they
define as a triangulation of biological endpoint data, physico-

Table 5 Performance measures for the human skin dataset and those trained on the animal membrane datasets

Description of performance Model MSE ION CORR NLL

Performance measured using the
whole human skin dataset

QSPR Moss & Cronin 20.09 -1157.60 0.14 –
Potts & Guy 5.50 -244.53 0.10 –

Pig skin Naïve model 1.58 0 0 –
GP-Matern3 1.70 -7.39 0.34 3.97

Rodent skin Naïve model 1.63 0 0 –
GP-Matern3 1.24 24.44 0.60 1.65

Performances on the human test set
using the model trained on rodent
and human skin training sets,
separately

QSPR Moss & Cronin 19.35 -1203.3 0.16 –
Potts & Guy 6.01 -304.59 0.12 –

Human skin Naïve model 1.48 0 0 –
GP 1.05 29.40 0.52 1.47

Rodent skin Naïve model 1.37 0 0 –
GP 1.13 17.22 0.46 1.47

Performance on the human test set
using models trained on the
human, rodent and mixed training
sets, respectively.

Human skin Naïve model 2.15 0 0 –
GP 1.93 9.96 0.43 13.06

Mixed GP 1.91 � 0.09 11.78 � 3.05 0.51 � 0.05 2.10 � 0.31
Rodent skin GP 1.51 29.47 0.68 –

Note: QSPR ION results are from the human training set.
CORR, Pearson correlation coefficient; GP, Gaussian Process; ION, improvement over naive model MSE, mean squared error; NLL, negative log
estimated predictive density or negative log loss; QSPR, quantitative structure-permeability relationship.
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chemical and structural information of the chemicals of which
the dataset is comprised and a suitable mathematical and/or
statistical approach to model development.[95] This might
suggest that the nature of the experimental data (in this case,
the Kp and Jmax data derived from laboratory-based experi-
ments) should not be removed from the interpretation or use
of the final model produced.

One point not directly raised by Cronin and Schultz is the
quality of the data used to construct the model. This was
reviewed by Moss et al.[15] who commented upon the wide
range of methods used by researchers and how this impacts on
the quality and variance observed in their datasets. Inevitably,
the nature of the biological membrane used clearly has an
important role in the model that is constructed from this data.
This is well understood and discussed elsewhere.[15] However,
one issue that is not as widely discussed is the number of data
points required to produce a valid model.

The merits, or otherwise, of extrapolating a model substan-
tially beyond its boundaries (defined by the range of data
input to the model) is both common sense and a clear limita-
tion in the applicability of the model. It might also be sug-
gested that, if the model is developed from a dataset that is
poorly or unevenly distributed – possibly exhibiting a high
degree of redundancy in its data – that it might also be difficult
to develop a model that is uniformly accurate even within
these boundaries. Sun et al.[21] demonstrated substantial
increases in covariance as the GP models extended outside
those areas of the dataset that were highly populated. While
this also implies criticism of comparisons made between GP
models and, for example, the Potts and Guy equation,[18] it is
important to demonstrate the fallibility of models in such
circumstances to avoid inappropriate use. This was high-
lighted by Moss et al.[20,96] who showed how QSAR models of
percutaneous absorption fail to accurately predict the perme-
ability coefficient, Kp, across a range of log P values. The
authors of that study also clearly demonstrated the general
failure of prediction across the whole range under examina-
tion. In the current study the ranges of data (i.e. for the
parameters investigated) used for human, porcine, rat and
artificial membranes were broadly comparable. More gener-
ally, the failure of models to predict a wide range of perme-
ability (in terms of physicochemical properties) suggests that
the models developed are quite poor in terms of their appli-
cability. For example, at very low or very high log P values,
metals and excipients used in pharmaceutical and cosmetic
formulations are poorly modelled and their absorption is quite
poorly understood. Reinforcing this limitation is the prepon-
derance of linear models used in this field. Models such as the
Potts and Guy equation[18] poorly fit the extremes of physico-
chemical properties described above, but would most likely be
unable to describe them anyway due to the underpinning
methodology used to generate the models. The GP approach
also allows the use of a single model to cover the whole range
of the data being examined, and does not rely on modifica-
tions to older models to try and expand the range of applica-
bility. It should also be noted that the models developed
previously[20,88] are based on datasets that are approximately
50% larger than those of, for example, Potts and Guy.[18]

Hence, while modelling outside the ranges of a dataset is not
desirable, the GP method appears to be able to accommodate
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Figure 3 Permeability coefficients as a function of log P for the (a)
human (b) pig and (c) rodent datasets.
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such data points better than linear models. Such discussions
inevitably lead on to the subject of outliers, which has been
described elsewhere.[15,95]

The human, pig, rodent and artificial membrane datasets
consist of 140, 15, 103 and 19 chemical compounds, respec-
tively, making the human skin dataset in particular one of the
largest datasets used for the modelling of human skin absorp-
tion. In addition, the dataset for the rodent skin is also rela-
tively large, with 103 members. Of equal importance are the
small datasets for artificial membranes and porcine skin, with
19 and 15 compounds in each dataset, respectively. Clearly,
the nature of the porcine skin dataset – most notably its size
and the inherent range of experimental protocols used in those
original studies – significantly impacts on not just the quality
of the porcine skin GP model, but it also puts the findings of
the other models into context. For example, the clear ‘false
positive’ of this study is that the rodent skin dataset produces
a more accurate model than porcine skin. While this would
suggest that rodent skin is more representative of human skin
than porcine skin, we are aware of the vast body of literature,

from Wester and Noonan[1] onwards, that presents experimen-
tal evidence that this is not the case. It may also be the case
that re-enforcement of model ‘quality’ – good or bad – occurs
with an increase in randomly selected data. While specific
data selection is somewhat subjective it is reasonable to
suggest that a spread of data evenly throughout the dataset
might remove issues of skew and possible bias in the devel-
opment of the QSAR or GP models. Recently, Sun et al.[21]

visualised the distribution of a human skin dataset (n = 149)
and showed that the data was unevenly distributed, based on a
number of physicochemical parameters, across the whole
dataset. In the current study, the visualisation and distribution
of the datasets are shown in Figure 4. This clearly shows some
bias in certain parts of the dataset (as shown on the histo-
grams, running top left to bottom right, in Figure 4a and 4b).
This may suggest that, while a particular dataset is quite large
in size, an uneven distribution of data points may affect the
model produced; hence, the size of the dataset may only be
relevant when it is evenly distributed across as wide a range of
physicochemical properties as possible.

(a) pig skin plot 
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Figure 4 Scatter plots for the pig and rodent datasets. (a) Pig skin plot. (b) Rodent skin plot.

1422 Journal of Pharmacy and Pharmacology 2011; 63: 1411–1427



Such an understanding of both the size and distribution of
the data used to develop models might impact on the quality
of analysis. For example, Lien and Gao[97] analysed a subset of
the Flynn dataset[22] which comprised twenty-two compounds
(r2 = 0.96). Other studies[84] have, for various reasons, exam-
ined only non-electrolytes from the Flynn dataset (n = 37,
r2 = 0.94), selected subsets of a larger database or examined a
small number of compounds and derived QSAR-type models.
These range from the work of Barratt,[98] which examined 60
‘small molecules and steroids’ (n = 60; r2 = 0.90) excluding
the hydrocortisone derivatives, from the Flynn dataset, Abra-
hams et al.,[99,100] who examined, respectively, 46 and 53 com-
pounds, to those who analysed substantially smaller datasets
with 20,[101] 16 (in two different studies by both Lee et al.[102]

and Morimoto et al.[103]) or four compounds.[104] In all these
cases, mechanistic inferences were drawn into the percutane-
ous absorption of these compounds and, by inference, those
that are chemically similar. However, given the issues pre-
sented in this study with the accuracy of small datasets, and
their examination by GP methods that have recently been
shown to exhibit superior statistical and predictive accuracy

compared with a number of QSAR-type models, the number
of compounds present in these datasets (despite claims of
‘diverse’ datasets, by Morimoto et al.[103]) would suggest that
the value of those models may be limited by the amount
of available data. The work of Potts and Guy[18,84] raises an
important issue in this matter; their models are substantially
different, as the first model[18] focuses on the whole Flynn
dataset,[84] whereas the second[84] used only the 37 non-
electrolytes from that dataset. Further, the high correlation
coefficients for some of the models derived from small
datasets might suggest over-fitting of the data, or that the
selection of a particular subset presents an unrealistic repre-
sentation of the statistical nature of those models. The inclu-
sion of a deliberately small dataset in this study clearly shows
the impact the volume of data can have on the quality of the
model, and presents quite clearly the possibility of developing
a misleading model, which reflects the comments on model
design and quality by Cronin and Schultz.[95]

Cronin and Schultz commented that biological processes
are seldom linear in nature and that ‘global modelling is
unlikely to be successful without the consideration of
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non-linearity’.[95] However, over-modelling may result in
simply modelling the error present in the data. This may be an
issue when considering the GP model produced for rodent
skin in this study, particularly with regard to the distribution
of the physicochemical properties of the data. For example,
while the rodent GP model is statistically better than the
porcine model, the preceding section has described that the
majority of predictions made with the human skin data are
more precise than those made with the rodent data (i.e.
Figure 2 and Table 4). Therefore, while the rodent dataset
provides a better model – in these experiments – than the
porcine skin model, it is still not as accurate as the human skin
model (Table 4). Clearly, a larger porcine skin dataset might
improve the accuracy of that model, relative to the rodent skin
model.

The results of this study indicate that permeation across
two animal membranes (rodent and pig skin) is, in a statistical
sense, similar. It also suggests that the artificial membranes
are poor replacements for human or animal skin (Table 4).
However, the overriding issue raised in this study is the nature
of a dataset and how it can influence the results, and subse-
quent interpretation, of any model produced. The size of the
datasets, in both absolute and comparative senses, appears to
influence model quality, producing counterintuitive results
that simply do not agree with a large literature of laboratory-
generated experimental data (i.e., that rat skin can be used to
predict human skin absorption, or that rat skin is a ‘better’, or
more accurate, model than porcine skin for human skin in
permeability experiments).

Further, while it may seem appropriate to collate datasets
together and produce larger datasets, such collations may not
necessarily result in better models, given the underlying dis-
tribution of the data and the physicochemical parameters rep-
resented. Hence, an efficiency in dataset design, including an
even and representative spread of data, avoiding data redun-
dancy, may be more important to dataset quality than simply
adding all the new percutaneous absorption data as it appears
in the literature. Such an argument does not even begin to
address issues of experimental design, as highlighted by
Moss et al.;[15] for example, the use of both experimental and
calculated (often by several different means) log P values in
datasets.[96] It would also suggest that, if a model is to be
generated using literature data from experiments based on
rodent or porcine skin, such a model would need to be vali-
dated thoroughly as, in the presence of substantial numbers of
experiments on human skin, such a model would be redun-
dant for any predictive purpose, but might yield important
mechanistic differences. However, the quality of the dataset
would need to improve substantially from that presented in
this study (particularly for porcine skin) if it was to be of any
realistic use.

Conclusions

The over-riding issue addressed in this study is that the devel-
opment of models for percutaneous absorption, for any
species, is very much dependent on the nature and quality of
the data used to construct the model, and that Cronin and
Schultz’s comments on model development should be consid-
ered when constructing mathematical representations of

percutaneous absorption to avoid the generation of false posi-
tive or false negative results.[95] This clearly reflects comments
made elsewhere, including by Cronin and Schultz and subse-
quent OECD criteria for the validation of QSARs. It is also
reflected in, for example, the work of Buist et al.,[105] who
developed models for finite dose experiments. While this
clearly has significance for understanding skin absorption and
is an important study, it also highlights the issues of data
availability and dataset construction discussed herein, as not
only does it focus on finite dose studies but also it is only
relevant for non-volatile compounds.
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